Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Cell Death Dis ; 14(4): 286, 2023 04 22.
Article in English | MEDLINE | ID: covidwho-2302136

ABSTRACT

How does SARS-CoV-2 cause lung microenvironment disturbance and inflammatory storm is still obscure. We here performed the single-cell transcriptome sequencing from lung, blood, and bone marrow of two dead COVID-19 patients and detected the cellular communication among them. Our results demonstrated that SARS-CoV-2 infection increase the frequency of cellular communication between alveolar type I cells (AT1) or alveolar type II cells (AT2) and myeloid cells triggering immune activation and inflammation microenvironment and then induce the disorder of fibroblasts, club, and ciliated cells, which may cause increased pulmonary fibrosis and mucus accumulation. Further study showed that the increase of T cells in the lungs may be mainly recruited by myeloid cells through ligands/receptors (e.g., ANXA1/FPR1, C5AR1/RPS19, and CCL5/CCR1). Interestingly, we also found that certain ligands/receptors (e.g., ANXA1/FPR1, CD74/COPA, CXCLs/CXCRs, ALOX5/ALOX5AP, CCL5/CCR1) are significantly activated and shared among lungs, blood and bone marrow of COVID-19 patients, implying that the dysregulation of ligands/receptors may lead to immune cell's activation, migration, and the inflammatory storm in different tissues of COVID-19 patients. Collectively, our study revealed a possible mechanism by which the disorder of cell communication caused by SARS-CoV-2 infection results in the lung inflammatory microenvironment and systemic immune responses across tissues in COVID-19 patients.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Ligands , Lung , Cell Communication
2.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 35(1): 106-109, 2023 Jan.
Article in Chinese | MEDLINE | ID: covidwho-2296324

ABSTRACT

The outbreak of novel coronavirus (SARS-CoV-2) infection has brought great harm to people's life and social development. Although SARS-CoV-2 infection is more common in mild patients at present, considering the characteristics of crtical disease, rapid progress and high mortality, the treatment of critical patients are the focus of clinical attention. Immune imbalance which is characterized by cytokine storm plays a vital role in SARS-CoV-2 induced acute respiratory distress syndrome (ARDS), extrapulmonary multiple organ failure and even death. Therefore, the application of immunosuppressive agent in crtical coronavirus disease patients has a promising prospect. In this paper, different immunosuppressive agents and their application in crtical SARS-CoV-2 infection are reviewed, so as to provide reference for crtical coronavirus disease therapy.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , SARS-CoV-2 , Immunosuppressive Agents/therapeutic use , Multiple Organ Failure , Respiratory Distress Syndrome/drug therapy
3.
Signal Transduct Target Ther ; 8(1): 24, 2023 01 06.
Article in English | MEDLINE | ID: covidwho-2246724

ABSTRACT

Severe neurological symptoms are associated with Coronavirus disease 2019 (COVID-19). However, the morphologic features, pathological nature and their potential mechanisms in patient brains have not been revealed despite evidence of neurotropic infection. In this study, neuropathological damages and infiltrating inflammatory cells were quantitatively evaluated by immunohistochemical staining, ultrastructural examination under electron microscopy, and an image threshold method, in postmortem brains from nine critically ill COVID-19 patients and nine age-matched cadavers of healthy individuals. Differentially expressed proteins were identified by quantitative proteomic assays. Histopathological findings included neurophagocytosis, microglia nodules, satellite phenomena, extensive edema, focal hemorrhage, and infarction, as well as infiltrating mononuclear cells. Immunostaining of COVID-19 brains revealed extensive activation of both microglia and astrocytes, severe damage of the blood-brain barrier (BBB) and various degrees of perivascular infiltration by predominantly CD14+/CD16+/CD141+/CCR7+/CD11c+ monocytes and occasionally CD4+/CD8+ T lymphocytes. Quantitative proteomic assays combined with bioinformatics analysis identified upregulated proteins predominantly involved in immune responses, autophagy and cellular metabolism in COVID-19 patient brains compared with control brains. Proteins involved in brain development, neuroprotection, and extracellular matrix proteins of the basement membrane were downregulated, potentially caused by the activation of transforming growth factor ß receptor and vascular endothelial growth factor signaling pathways. Thus, our results define histopathological and molecular profiles of COVID-19-associated monocytic encephalitis (CAME) and suggest potential therapeutic targets.


Subject(s)
COVID-19 , Encephalitis , Humans , Monocytes , COVID-19/genetics , Autopsy , Proteomics , Vascular Endothelial Growth Factor A
4.
Cell Rep ; 39(11): 110955, 2022 06 14.
Article in English | MEDLINE | ID: covidwho-1866959

ABSTRACT

Direct myocardial and vascular injuries due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection-driven inflammation is the leading cause of acute cardiac injury associated with coronavirus disease 2019 (COVID-19). However, in-depth knowledge of the injury characteristics of the heart affected by inflammation is lacking. In this study, using a quantitative spatial proteomics strategy that combines comparative anatomy, laser-capture microdissection, and histological examination, we establish a region-resolved proteome map of the myocardia and microvessels with obvious inflammatory cells from hearts of patients with COVID-19. A series of molecular dysfunctions of myocardia and microvessels is observed in different cardiac regions. The myocardia and microvessels of the left atrial are the most susceptible to virus infection and inflammatory storm, suggesting more attention should be paid to the lesion and treatment of these two parts. These results can guide in improving clinical treatments for cardiovascular diseases associated with COVID-19.


Subject(s)
COVID-19 , Heart Injuries , COVID-19/complications , Humans , Inflammation , Proteome , SARS-CoV-2
5.
Research Square ; 2022.
Article in English | EuropePMC | ID: covidwho-1786477

ABSTRACT

How SARS-CoV-2 causes disturbances of the lung microenvironment and systemic immune response remains a mystery. Here, we first analyze detailedly paired single-cell transcriptome data of the lungs, blood and bone marrow of two patients who died of COVID-19. Second, our results demonstrate that SARS-CoV-2 infection significantly increases the cellular communication frequency between AT1/AT2 cells and highly inflammatory myeloid cells, and induces the pulmonary inflammation microenvironment, and drives the disorder of fibroblasts, club and ciliated cells, thereby causing the increase of pulmonary fibrosis and mucus accumulation. Third, our works reveal that the increase of the lung T cell infiltration is mainly recruited by myeloid cells through certain ligands/receptors (ANXA1/FPR1, C5AR1/RPS19 and CCL5/CCR1), rather than AT1/AT2. Fourth, we find that some ligands and receptors such as ANXA1/FPR1, CD74/COPA, CXCLs/CXCRs, ALOX5/ALOX5AP, CCL5/CCR1, are significantly activated and shared among patients’ lungs, blood and bone marrow, implying that dysregulated ligands and receptors may cause the migration, redistribution and the inflammatory storm of immune cells in different tissues. Overall, our study reveals a latent mechanism by which the disorders of ligands and receptors caused by SARS-CoV-2 infection drive cell communication alteration, the pulmonary inflammatory microenvironment and systemic immune responses across tissues in COVID-19 patients.

6.
Nat Cell Biol ; 23(12): 1314-1328, 2021 12.
Article in English | MEDLINE | ID: covidwho-1559292

ABSTRACT

The lung is the primary organ targeted by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), making respiratory failure a leading coronavirus disease 2019 (COVID-19)-related mortality. However, our cellular and molecular understanding of how SARS-CoV-2 infection drives lung pathology is limited. Here we constructed multi-omics and single-nucleus transcriptomic atlases of the lungs of patients with COVID-19, which integrate histological, transcriptomic and proteomic analyses. Our work reveals the molecular basis of pathological hallmarks associated with SARS-CoV-2 infection in different lung and infiltrating immune cell populations. We report molecular fingerprints of hyperinflammation, alveolar epithelial cell exhaustion, vascular changes and fibrosis, and identify parenchymal lung senescence as a molecular state of COVID-19 pathology. Moreover, our data suggest that FOXO3A suppression is a potential mechanism underlying the fibroblast-to-myofibroblast transition associated with COVID-19 pulmonary fibrosis. Our work depicts a comprehensive cellular and molecular atlas of the lungs of patients with COVID-19 and provides insights into SARS-CoV-2-related pulmonary injury, facilitating the identification of biomarkers and development of symptomatic treatments.


Subject(s)
COVID-19/genetics , Lung/metabolism , Transcriptome/genetics , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/pathology , Alveolar Epithelial Cells/virology , COVID-19/metabolism , Fibrosis/metabolism , Fibrosis/pathology , Fibrosis/virology , Humans , Lung/pathology , Lung/virology , Proteomics/methods , SARS-CoV-2/pathogenicity
8.
Cell Res ; 31(8): 836-846, 2021 08.
Article in English | MEDLINE | ID: covidwho-1275907

ABSTRACT

Severe COVID-19 disease caused by SARS-CoV-2 is frequently accompanied by dysfunction of the lungs and extrapulmonary organs. However, the organotropism of SARS-CoV-2 and the port of virus entry for systemic dissemination remain largely unknown. We profiled 26 COVID-19 autopsy cases from four cohorts in Wuhan, China, and determined the systemic distribution of SARS-CoV-2. SARS-CoV-2 was detected in the lungs and multiple extrapulmonary organs of critically ill COVID-19 patients up to 67 days after symptom onset. Based on organotropism and pathological features of the patients, COVID-19 was divided into viral intrapulmonary and systemic subtypes. In patients with systemic viral distribution, SARS-CoV-2 was detected in monocytes, macrophages, and vascular endothelia at blood-air barrier, blood-testis barrier, and filtration barrier. Critically ill patients with long disease duration showed decreased pulmonary cell proliferation, reduced viral RNA, and marked fibrosis in the lungs. Permanent SARS-CoV-2 presence and tissue injuries in the lungs and extrapulmonary organs suggest direct viral invasion as a mechanism of pathogenicity in critically ill patients. SARS-CoV-2 may hijack monocytes, macrophages, and vascular endothelia at physiological barriers as the ports of entry for systemic dissemination. Our study thus delineates systemic pathological features of SARS-CoV-2 infection, which sheds light on the development of novel COVID-19 treatment.


Subject(s)
COVID-19/pathology , Lung/virology , SARS-CoV-2/isolation & purification , Aged , Aged, 80 and over , Autopsy , COVID-19/virology , China , Cohort Studies , Critical Illness , Female , Fibrosis , Hospitalization , Humans , Kidney/pathology , Kidney/virology , Leukocytes, Mononuclear/pathology , Leukocytes, Mononuclear/virology , Lung/pathology , Male , Middle Aged , RNA, Viral/metabolism , SARS-CoV-2/genetics , Spleen/pathology , Spleen/virology , Trachea/pathology , Trachea/virology
9.
Natl Sci Rev ; 7(12): 1868-1878, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-1087785

ABSTRACT

Systematic autopsy and comprehensive pathological analyses of COVID-19 decedents should provide insights into the disease characteristics and facilitate the development of novel therapeutics. In this study, we report the autopsy findings from the lungs and lymphatic organs of 12 COVID-19 decedents-findings that evaluated histopathological changes, immune cell signature and inflammatory factor expression in the lungs, spleen and lymph nodes. Here we show that the major pulmonary alterations included diffuse alveolar damage, interstitial fibrosis and exudative inflammation featured with extensive serous and fibrin exudates, macrophage infiltration and abundant production of inflammatory factors (IL-6, IP-10, TNFα and IL-1ß). The spleen and hilar lymph nodes contained lesions with tissue structure disruption and immune cell dysregulation, including lymphopenia and macrophage accumulation. These findings provide pathological evidence that links injuries of the lungs and lymphatic organs with the fatal systematic respiratory and immune malfunction in critically ill COVID-19 patients.

SELECTION OF CITATIONS
SEARCH DETAIL